Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116307, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593497

RESUMO

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.

2.
Opt Express ; 32(7): 12318-12339, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571058

RESUMO

The increasing risk posed by space debris highlights the need for accurate localization techniques. Spaceborne single photon Lidar (SSPL) offers a promising solution, overcoming the limitations of traditional ground-based systems by providing expansive coverage and superior maneuverability without being hindered by weather, time, or geographic constraints. This study introduces a novel approach leveraging non-parametric Bayesian inference and the Dirichlet process mixture model (DPMM) to accurately determine the distance of space debris in low Earth orbit (LEO), where debris exhibits nonlinear, high dynamic motion characteristics. By integrating extended Kalman filtering (EKF) for range gating, our method captures the temporal distribution of reflected photons, employing Markov chain Monte Carlo (MCMC) for iterative solutions. Experimental outcomes demonstrate our method's superior accuracy over conventional statistical techniques, establishing a clear correlation between radial absolute velocity and ranging error, thus significantly enhancing monostatic space debris localization.

3.
Eur J Nutr ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622294

RESUMO

PURPOSE: The available evidence regarding the role of fruit and vegetable consumption in the development of colorectal polyps remains inconclusive, and there is a lack of data on different histopathologic features of polyps. We aimed to evaluate the associations of fruit and vegetable consumption with the prevalence of colorectal polyps and its subtypes in a high-risk population in China. METHODS: We included 6783 Chinese participants aged 40-80 years who were at high risk of colorectal cancer (CRC) in the Lanxi Pre-colorectal Cancer Cohort (LP3C). Dietary information was obtained through a validated food-frequency questionnaire (FFQ), and colonoscopy screening was used to detect colorectal polyps. Dose-response associations of fruit and vegetable intake with the prevalence of polyps were calculated using multivariate-adjusted regression models, which was reported as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: 2064 cases of colorectal polyps were ascertained in the LP3C during 2018-2019. Upon multivariable adjustments, including the diet quality, fruit consumption was inversely associated with the prevalence of polyps (P trend = 0.02). Participants in the highest tertile of fruit intake had a 25% lower risk (OR: 0.75; 95% CI 0.62‒0.92) compared to non-consumers, while vegetable consumption had no significant association with polyp prevalence (P trend = 0.86). In terms of colorectal histopathology and multiplicity, higher fruit intake was correlated with 24, 23, and 33% lower prevalence of small polyps (OR: 0.76; 95% CI 0.62‒0.94; P trend = 0.05), single polyp (OR: 0.77; 95% CI 0.62‒0.96; P trend = 0.04), and distal colon polyps (OR: 0.67; 95% CI 0.51‒0.87; P trend = 0.003), respectively. CONCLUSIONS: Fresh fruit is suggested as a protective factor to prevent colorectal polyps in individuals at high risk of CRC, and should be underscored in dietary recommendations, particularly for high-risk populations.

4.
Nanotechnology ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651768

RESUMO

Selective and sensitive detection of volatile organic compounds (VOCs) holds paramount importance in real-world applications. This study proposes an innovative approach utilizing a single ReS2 field-effect transistor (FET) characterized by distinct in-plane anisotropy, specifically tailored for VOC recognition. The unique responses of ReS2, endowed with robust in-plane anisotropic properties, demonstrate significant difference along the a-axis and b-axis directions when exposed to four kinds of VOCs: acetone, methanol, ethanol, and IPA. Remarkably, the responses of ReS2 were significantly magnified under ultraviolet (UV) illumination, particularly in the case of acetone, where the response amplified by 10-15 times and the detection limit decreasing from 70 ppm to 4 ppm compared to the dark conditions. Exploiting the discernible variances in responses along the a-axis and b-axis under both UV and dark conditions, the data points of acetone, ethanol, methanol and IPA gases were clearly separated in the principal component space without any overlap through principal component analysis (PCA), indicating that the single ReS2 FET has a high ability to distinguish various gas species. The exploration of anisotropic sensing materials and light excitation strategies can be applied to a broad range of sensing platforms based on 2D materials for practical applications. .

5.
Cell Tissue Res ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492000

RESUMO

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.

6.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461553

RESUMO

Nanofluids have excellent lubrication and high thermal conductivity. However, the agglomeration and sedimentation produced by the large surface energy of nanoparticles in base liquid threaten the long-term dispersion stability and impact the wide application of nanofluid. In this work, based on the self-assemble behavior and continuous network structure formed by low molecular weight organic gelator, the uniform clusters were formed through regulating the kinetics behavior in the gelling process. The dragging effect was demonstrated by oleic acid - sodium dodecyl sulfate (OA-SDS) bicomponent gelator and graphene oxide (GO) nanosheets. The results showed that GO nanofluids dispersed by OA-SDS were stable for more than 12 months. The well-dispersed GO nanofluid exhibited better anti-friction and anti-wear properties under both immersion and electrostatic minimum quantity lubrication conditions. Moreover, the lower contact angle, surface tension and droplet size of nanofluids after charging improved the wettability on the frictional interface. The GO adsorption film formed on the friction interface protected the tribochemical reaction film of iron oxide and prevented the occurrence of sintering of base oil.

7.
Front Plant Sci ; 15: 1225031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463569

RESUMO

Background: Biochar application has become one of the most potential tools to improve soil fertility and plant growth for sustainable and eco-friendly agriculture. However, both positive and negative effects of biochar application have been recorded on plant growth and soil fertility. Methods: This study investigated the impact of different application rates (0, 600, 900, 1200, and 1800 kg/ha) of biochar on the soil nutrient contents, accumulation of nutrients and dry matter in different plant parts, and growth of flue-cured tobacco plants under field conditions. Results: Results demonstrated that soil organic carbon pool and carbon/nitrogen ratio were increased proportionally with the increasing dosage of biochar, 25.54 g/kg and 14.07 g/kg compared with control 17 g/kg and 10.13 g/kg, respectively. The contents of soil total nitrogen were also significantly increased after biochar application in the middle (1.77 g/kg) and late-growth (1.54 g/kg) stages of flue-cured tobacco than in control (1.60 g/kg and 1.41 g/kg, respectively). The contents of soil nitrate nitrogen were also higher under low (600 and 900 kg/ha) application rates of biochar and reduced when higher (1200 and 1800 kg/ha) dosages of biochar were applied. However, it was observed that varying application rates of biochar had no impact on soil ammonium nitrogen content during the growth period of flue-cured tobacco plants. The nutrient accumulation (N, P, K) in different parts of flue-cured tobacco plants was significantly increased under a low application rate of biochar, which enhanced the soil and plant analyzer development values, effective leaves number, growth, dry matter accumulation, and leaf yield of flue-cured tobacco. In contrast, the high biochar application rate (1200 and 1800 kg/ha) negatively impacted nutrient accumulation and growth of flue-cured tobacco. Conclusion: Conclusively, the optimum application of biochar (600 and 900 kg/ha) is beneficial for plant growth, soil fertility, accumulation of nutrients, and dry matter in different plant parts. However, excessive biochar application (> 900 kg/ha) could inhibit flue-cured tobacco plant growth. This study provides a theoretical foundation for biochar application in tobacco and other crop production to obtain agricultural sustainability and economic stability.

8.
Int Wound J ; 21(3): e14831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484730

RESUMO

Neoadjuvant chemoimmunotherapy is becoming an increasingly important part of the management of lung cancer to facilitate surgical resection. This study aimed to summarize the treatment-related adverse events (TRAEs) and wound complications of neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC). Eligible studies of neoadjuvant chemoimmunotherapy for NSCLC were identified from PubMed, Embase and Web of Science. The endpoints mainly included TRAEs and wound complications. Stata18 software was used for statistical analysis with p < 0.05 considered statistically significant. Twenty studies including a total of 1072 patients were eligible for this study. Among the patients who received neoadjuvant chemoimmunotherapy, the pooled prevalence of any grade TRAEs was 77% (95% confidence interval [CI] [0.64-0.86]), grade 1-2 TRAEs was 77% (95% CI [0.58-0.89]) and grade ≥3 TRAEs was 26% (95% CI [0.16-0.38]). Surgery-related complications rate was 22% (95% CI [0.14-0.33]). Among the wound complications, the pooled rate of air leakage was 10% (95% CI [0.04-0.23]), pulmonary/wound infection was 8% (95% CI [0.05-0.13]), bronchopleural fistula was 8% (95% CI [0.02-0.27]), bronchopulmonary haemorrhage was 3% (95% CI [0.01-0.05]), pneumonia was 5% (95% CI [0.02-0.10]), pulmonary embolism was 1% (95% CI [0.01-0.03]), pleural effusion was 7% (95% CI [0.03-0.14]) and chylothorax was 4% (95% CI [0.02-0.09]). Overall, neoadjuvant chemoimmunotherapy in NSCLC results a high incidence of grade 1-2 TRAEs but a low risk of increasing the incidence of ≥3 grade TRAEs and wound complications. These results need to be confirmed by more large-scale prospective randomized controlled trials and studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Terapia Neoadjuvante/efeitos adversos , Estudos Prospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Imunoterapia/efeitos adversos
9.
Psychiatry Res Neuroimaging ; 341: 111810, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38555800

RESUMO

Late-life depression is one of the most damaging mental illnesses, disrupting the normal lives of older people by causing chronic illness and cognitive impairment. Patients with late-life depression, accompanied by changes in appetite, insomnia, fatigue and guilt, are more likely to experience irritability, anxiety and somatic symptoms. It increases the risk of suicide and dementia and is a major challenge for the public health systems. The current clinical assessment, identification and effectiveness assessment of late-life depression are primarily based on history taking, mental status examination and scale scoring, which lack subjectivity and precision. Functional near-infrared spectroscopy is a rapidly developing optical imaging technology that objectively reflects the oxygenation of hemoglobin in different cerebral regions during different tasks and assesses the functional status of the cerebral cortex. This article presents a comprehensive review of the assessment of functional near-infrared spectroscopy technology in assessing depressive symptoms, social functioning, and cognitive functioning in patients with late-life depression. The use of functional near-infrared spectroscopy provides greater insight into the neurobiological mechanisms underlying depression and helps to assess these three aspects of functionality in depressed patients. In addition, the study discusses the limitations of previous research and explores potential advances in the field.

10.
J Environ Sci (China) ; 141: 16-25, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408817

RESUMO

Azole fungicides (AFs) play an important role in the prevention and treatment of fungal diseases in agricultural crops. However, limited studies are addressing the fate and ecological risk of AFs in the urban water cycle at a large watershed scale. To address this gap, we investigated the spatiotemporal distribution and ecological risk of twenty AFs in the lower reaches of the Yangtze River across four seasons. Carbendazim (CBA), tebuconazole (TBA), tricyclazole (TCA), and propiconazole (PPA) were found to be the dominant compounds. Their highest concentrations were measured in January (188.3 ng/L), and November (2197.1 ng/L), July (162.0 ng/L), and November (1801.9 ng/L), respectively. The comparison between wastewater treatment plants (WWTPs) effluents and surface water suggested that industrial WWTPs are major sources of AFs in the Yangtze River. In particular, TBA and PPA were found to be the most recalcitrant AFs in industrial WWTPs, while difenoconazole (DFA) was found to be the most potent pollutant in municipal WWTPs, with an average removal rate of less than 60%. The average risk quotient (RQ) for the entire AFs was 6.45 in the fall, which was higher than in January (0.98), April (0.61), and July (0.40). This indicates that AFs in surface water posed higher environmental risks during the dry season. Additionally, the exposure risk of AFs via drinking water for sensitive populations deserves more attention. This study provides benchmark data on the occurrence of AFs in the lower reaches of the Yangtze River, and offers suggestions for better reduction of AFs.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Rios , Azóis , Monitoramento Ambiental , Ciclo Hidrológico , Água , China , Medição de Risco , Poluentes Químicos da Água/análise
11.
Sci Adv ; 10(5): eadj3808, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306424

RESUMO

G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.


Assuntos
Dor , Receptores Acoplados a Proteínas G , Humanos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo
12.
Environ Pollut ; 344: 123368, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246217

RESUMO

Nitrophenols have received extensive attention due to their strong light-absorbing ability in the near-ultraviolet-visible region, which could be influenced by the atmospheric processes of nitrophenols. However, our knowledge and understanding of the formation and evolution of nitrophenols are still in the nascent stages. In the present study, the mixing states of four mononitrophenol particles (i.e., nitrophenol, methynitrophenol, nitrocatechol, and methoxynitrophenol), and one nitropolycyclic aromatic hydrocarbon particles (i.e., nitronaphthol (NN)) were investigated using a single-particle aerosol mass spectrometer (SPAMS) in November 2019 in Qingdao, China. The results showed, for the first time, that mononitrophenols and NN exhibit different mixing states and diurnal variations. Four mononitrophenols were internally mixed well with each other, and with organic acids, nitrates, potassium, and naphthalene. The diurnal variation in the number fraction of mononitrophenols presented two peaks at 07:00 to 09:00 and 18:00 to 20:00, and a valley at noon. Atmospheric environmental conditions, including NO2, O3, relative humidity, and temperature, can significantly influence the diurnal variation of mononitrophenols. Multiple linear regression and random forest regression models revealed that the main factors controlling the diurnal variation of mononitrophenols were photochemical reactions during the day and aqueous-phase reactions during the night. Unlike mononitrophenols, about 62-83% of NN were internally mixed with [NH4]+ and [H(NO3)2]-, but not with organic acids and potassium. The diurnal variation of NN was also different from that of mononitrophenols, generally increased from 17:00 to 10:00 and then rapidly decreaed from 11:00 to 16:00. These results imply that NN may have sources and atmospheric processes that are different from mononitrophenols. We speculate that this is mostly controlled by photochemical reactions and mixing with [NH4]+, which may influence the diurnal variation of NN in the ambient particles; however, this requires further confirmation. These findings extend our current understanding of the atmospheric formation and evolution of nitrophenols.


Assuntos
Poluentes Atmosféricos , Nitrofenóis , Potássio , Ritmo Circadiano , Antifúngicos , China , Poeira , Aerossóis , Monitoramento Ambiental , Material Particulado , Estações do Ano
13.
Inorg Chem ; 63(4): 1947-1953, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215462

RESUMO

Oxygen evolution reaction (OER) plays an important role in energy conversion processes such as water electrolysis and metal-air batteries. At present, finding a high-performance and low-cost catalyst for the OER in acidic media remains a great challenge. It is therefore important to develop efficient, robust, and inexpensive electrocatalysts by replacing noble metal-based catalysts with transition-metal electrocatalysts. Herein, we propose a facile method for incorporating Ce-metal single atoms into Co3O4 nanosheets to boost their OER activity and stability. Owing to the enhanced charge transfer and improved electronic structure resulting from Ce incorporation, the obtained Ce single-atom-doped Co3O4 nanosheet exhibits greatly enhanced OER performance. It achieves a 10 mA cm-2 current density under a low overpotential of 348 mV in a 0.5 M H2SO4 solution with excellent stability, outperforming the state-of-the-art non-noble electrocatalysts recently reported in acid.

14.
J Diabetes ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095268

RESUMO

OBJECTIVE: Maturity-onset diabetes of the young type 13 (MODY13), a rare type of monogenic diabetes, is often misdiagnosed as type 1 or type 2 diabetes. To improve early diagnosis and precise treatment, we performed a systematic review and analysis of the literature about MODY13. METHODS: PubMed, Cochrane, Embase, China National Knowledge Infrastructure (CNKI), Chinese BioMedical (CBM) Literature Database, and Wanfang Database were searched using the following search terms: "MODY13," "KCNJ11 maturity-onset diabetes of the young," "KCNJ11-MODY," "maturity-onset diabetes of the young type 13," and "neonatal diabetes mellitus KCNJ11." The demography, clinical characteristics, and gene mutations of patients were expressed with descriptive statistical methods. RESULTS: A total of 33 reports were included in this study, including 75 patients and 28 types of mutations. Thirty-six patients were male. The mean onset age was 25.20 ± 15.26 years. The averages of recorded body mass index, glycated hemoglobin (HbA1c), and fasting C-peptide were 23.45 ± 4.56kg/m2 , 10.07 ± 1.96%, and 0.31 ± 0.23nmol/L, respectively. Most of the mutation sites were located in the cytosolic region of N- and C-terminal domains of Kir6.2. Seven patients were reported to have diabetic chronic complications. CONCLUSION: MODY13 was diagnosed later than other types of MODY and was associated with low fasting C-peptide. Mutation sites of MODY13 were mostly concentrated in N- and C-terminal intracellular domains. The majority of KCNJ11 gene mutations causing MODY 13 were from G to A. The incidence rates of chronic complications were lower than type 1 and type 2 diabetes.

15.
Aging (Albany NY) ; 15(24): 15676-15700, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38112620

RESUMO

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.


Assuntos
Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Metilação , Autofagia , Sepse/genética
16.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004886

RESUMO

The electroosmosis effect is a complement to the theory of the traditional capillary penetration of cutting fluid. In this study, based on the electric double layer (EDL) characteristics at friction material/solution interfaces, the influences of additives and their concentrations on capillary electroosmosis were investigated, and a water-based cutting-fluid formulation with consideration to the electroosmosis effect was developed. The lubrication performance levels of cutting fluids were investigated by a four-ball tribometer. The results show that the EDL is compressed with increasing ionic concentration, which suppresses the electroosmotic flow (EOF). The specific adsorption of OH- ions or the dissociation of surface groups is promoted as pH rises, increasing the absolute zeta potential and EOF. The polyethylene glycol (PEG) additive adsorbed to the friction material surface can keep the shear plane away from the solid surface, reducing the absolute zeta potential and EOF. The electroosmotic performance of cutting fluid can be improved by compounding additives with different electroosmotic performance functions. Furthermore, electroosmotic regulators can adjust the zeta potential by the electrostatic adsorption mechanism, affecting the penetration performance of cutting fluid in the capillary zone at the friction interface. The improvement in the tribological performance of cutting fluid developed with consideration given to the electroosmosis effect is attributed to the enhancement of the penetration ability of the cutting fluid and the formation of more abundant amounts of lubricating film at the interface.

17.
Immun Inflamm Dis ; 11(10): e1043, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37904708

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an airway-associated lung disorder, resulting in airway inflammation. This article aimed to explore the role of the krüppel-like factor 9 (KLF9)/microRNA (miR)-494-3p/phosphatase and tensin homolog (PTEN) axis in airway inflammation and pave a theoretical foundation for the treatment of COPD. METHODS: The COPD mouse model was established by exposure to cigarette smoke, followed by measurements of total cells, neutrophils, macrophages, and hematoxylin and eosin staining. The COPD cell model was established on human lung epithelial cells BEAS-2B using cigarette smoke extract. Cell viability was assessed by cell counting kit-8 assay. miR-494-3p, KLF9, PTEN, and NLR family, pyrin domain containing 3 (NLRP3) levels in tissues and cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Inflammatory factors (TNF-α/IL-6/IL-8/IFN-γ) were measured by enzyme-linked immunosorbent assay. Interactions among KLF9, miR-494-3p, and PTEN 3'UTR were verified by chromatin immunoprecipitation and dual-luciferase assays. RESULTS: KLF9 was upregulated in lung tissues of COPD mice. Inhibition of KLF9 alleviated airway inflammation, reduced intrapulmonary inflammatory cell infiltration, and repressed NLRP3 expression. KLF9 bound to the miR-494-3p promoter and increased miR-494-3p expression, and miR-494-3p negatively regulated PTEN expression. miR-494-3p overexpression or Nigericin treatment reversed KLF9 knockdown-driven repression of NLRP3 inflammasome and inflammation. CONCLUSION: KLF9 bound to the miR-494-3p promoter and repressed PTEN expression, thereby facilitating NLRP3 inflammasome-mediated inflammation.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
18.
Micromachines (Basel) ; 14(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893251

RESUMO

Jet noise is a common problem in minimum quantity lubrication (MQL) technology. This should be given great attention because of its serious impacts on the physical and mental health of the operators. In this study, a micro-grooved nozzle is proposed based on the noise reduction concept of biological micro-grooves. The flow field and acoustic characteristics of an original nozzle and a micro-grooved nozzle were investigated numerically to help better understand the noise reduction mechanism. The reasons for noise generation and the effects of the length (L), width (W) and depth (δ) of the micro-grooves on noise reduction were analyzed. It was found that jet noise is generated by the large-scale vortex ring structure and the pressure fluctuations caused by its motion. The overall sound pressure level (OASPL) decreased with the increases in W and δ, and increased with the increase in L. Among of them, δ has the greatest effect on noise reduction. The maximum noise reduction achieved was 6.66 dB, as verified by the OASPL test. Finally, the noise reduction mechanism was discussed in terms of the flow field, vorticity and the frequency characteristics. Micro-grooves can enhance the mixing of airflow inside the nozzle and accelerate the process of large-scale vortices breaking into smaller-scale vortices. It also reduces the sound pressure level (SPL) of middle frequencies, as well as the SPL of high frequencies on specific angles.

19.
Front Public Health ; 11: 1225478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841722

RESUMO

Introduction: Falls from height (FFH) accidents can devastate families and individuals. Currently, the best way to prevent falls from heights is to wear personal protective equipment (PPE). However, traditional manual checking methods for safety hazards are inefficient and difficult to detect and eliminate potential risks. Methods: To better detect whether a person working at height is wearing PPE or not, this paper first applies field research and Python crawling techniques to create a dataset of people working at height, extends the dataset to 10,000 images through data enhancement (brightness, rotation, blurring, and Moica), and categorizes the dataset into a training set, a validation set, and a test set according to the ratio of 7:2:1. In this study, three improved YOLOv5s models are proposed for detecting PPE in construction sites with many open-air operations, complex construction scenarios, and frequent personnel changes. Among them, YOLOv5s-gnconv is wholly based on the convolutional structure, which achieves effective modeling of higher-order spatial interactions through gated convolution (gnConv) and cyclic design, improves the performance of the algorithm, and increases the expressiveness of the model while reducing the network parameters. Results: Experimental results show that YOLOv5s-gnconv outperforms the official model YOLOv5s by 5.01%, 4.72%, and 4.26% in precision, recall, and mAP_0.5, respectively. It better ensures the safety of workers working at height. Discussion: To deploy the YOLOv5s-gnConv model in a construction site environment and to effectively monitor and manage the safety of workers at height, we also discuss the impacts and potential limitations of lighting conditions, camera angles, and worker movement patterns.


Assuntos
Acidentes por Quedas , Algoritmos , Humanos , Equipamento de Proteção Individual
20.
ACS Omega ; 8(36): 32990-32997, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720783

RESUMO

This study presents a novel approach to mitigating bacterial infections and antibiotic resistance in medical implants through the integration of iodine-doping and 3D printing techniques. Iodine, with its potent antibacterial properties, and titanium alloy (Ti), a popular metal for implants due to its mechanical and biological properties, were combined via electrodeposition on 3D-printed titanium alloy (3D-Ti) implants. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy confirmed the successful creation of iodine-doped titanium implants with improved iodine content due to the rough surface of the 3D-printed material. In vitro studies revealed that these implants significantly inhibited bacterial adhesion and biofilm formation and showed favorable release kinetics for iodine ions. Biocompatibility tests demonstrated no cytotoxic effects and good hemocompatibility. The implants demonstrated enhanced antimicrobial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria strains. The findings imply that the integration of iodine-doping and 3D printing technologies is a promising strategy for treating postoperative infections associated with medical implants, consequently bettering the prognosis for patients. Future investigations are encouraged to delve into the long-standing impacts and prospective clinical utility of this groundbreaking methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA